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~(a+l ~– 1. Repeat until the circle is just
tangent to the given z curve. The point of
tangency gives the impedance Z. for maxi-

mum transfer, while

P2
—.

P,= a+2

as shown in Fig. 3.
Note that maximum power transfer does

not occur at the point of closest approach
to Z,*.
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A Comment on the Scattering

Matrix of Cascaded 2n-Ports*

Epprechtl calculated the scattering ma-

trix of two cascaded two-ports. Redheffer2

does the same for the 2tz-port using non-
standard notation. This note will comment

on the physical interpretation of the con-
stituents of the resultant-scattering matrix.

To use the notation of Fig. 1, the scattering
matrix constituents are

.sI1 = .sl~’ + S12’S11”(l– S22’.S11’’LS2121

S12= .s12’(1– .s11’s,2’)-1s12”

.S21 = .s21”(1 – .s22’.s11’’)-1s21’

S22= S22°+ S21’’.S2(1(1—S1l’’S!M’)–1S12”.(1)
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Fig. l—S’ and S” are n Xx scattering matrices of the
respective networks. S is the scattering matrix of
the resultant network:

The interpretation given to these formu-

las is that .$1 is the bilinear transformation
of SU through the single primed network,
and Sm is the bilinear transformation
of .&” through the double primed network.
Both of these results also follow from the
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definition of scattering matrix terms on the
basis of matched termination (i.e., if the out-

put has a matched load, .S = O, the input co-

efficient of the double primed network is SII”,

which is the output coefficient of the primed
network). S12 and SZI are similarly inter-

pretable, with the special case of bilaterally

matched networks being the “star” multi-

plication of Altschuler and Kahn.3

It should also be noted that formulas(1)
are valid when an n-port and an tiz-port are
cascadedi (or interconnected).
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Use of Flow Graphs to Evaluate

Mistermination Errors in Loss and

Phase Measurements*

The purpose of this note is to show how

the signal flow graph technique illustrated

by Hunton’ leads quite naturally to an ex-
pression for error due to misterminatiou
when measuring insertion loss and phase.

We start with the flow graph used by

Hunton to represent the tandem connection

of generator, network and load:

““EIEIZI’L
b, SL7 a,

With the aid of the nontouching loop rule to
solve the graph, Hunton easily obtained the

result

b,_ S21__ —.__ —___ .
E – I – rgsr rLs29+rgrL(s11s2 !–s12s21)

Very little extra work is needed to compute
insertion loss and phase measurement errors
due to mistermination, once the above equa-
tion is availabie.

E is the wave amplitude at the output
port of the generator when terminated in a
matched load ZO. If Vg znd 20 represent the

* Received by the PGMTT, June 27, 1961
1 J. K. Hunton, “Analysis of microwave measme-

ment techniques by means of signal flow graphs,”
IRE TRANS. ON MICROWAVE THEORY AND TECH-
NIO1lES VOl MTT-S. DQ. 206–2 12; March, 1960,

Thevenin generator voltage and impedance,
then

E = —~— !“,,.
Zo + z,

since

l+r.
zg=zo ——

l–~’
l–r.

1<= —T— ?’..

‘rhe above equations together give

.sk(l – r,)
b,= ~’ ————————————————

2 1 – rg& – rh%j+ rgrL(&1&2-&2& ~

From the flow graph we see that at =bJL.

The total wave amplitude across the load is

therefore

,
VO=a~+bS=~

.S,,(l-rU)(l+r~).——__— ____________ .
.1 – r,sll–r~sz~+r,r& (sl,,s22-.s12sj1)

Now the measured insertion ratio Rm is ob-
tained by dividing the load voltage with net-

work removed by the load voltage with net-
work inserted. To remove the network, we
set S1l, .& equal to zeru and S12, S21 to unit!-.

The result is

x _l – s22rL–s11rO+r,rL(s11s22–s12s21).
m

(1– r,rdszl

If the source and load were reflectionless
(r, = F,Z =0), the cm-responding insertion

ratioRo would be just

R, =$.

Hence, the quotient

Q+!-

U

l–s2:rL–sll~.+rcrL (s11s22–s1fi21]
. ——————._———_————

1 – rfrL

provides the measurement error due to net-
work mistermination. In the common case
where rf and l’~ are <<1, Q simplifies to

Qw1+A

where A, the fractional error in nepers and
radians, is given by

A = – sllr, —szm~

+ r,rz(l + .sI,s,, – S12S21).

For reciprocal structures, SIZ is equal to

Sal; these in turn are equal to the reciprocal

of the design insertion ratio Ro.

As an example of the application of the
expression for A, consider the measurement

of a network having I Sn I = [ Sy2I =0.3 (cor-
responding to a VSWR of 1.85) and ] S12~
= I SX I =1. Then, if source and load were
such that ] 1’01= IIk] =0.02 (VSWR of

1.04), we could expect maximum errors of

0.11 db or 0.73 degrees, depending on the
phases of the S’s and r’s.
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